31,878 research outputs found

    Chiral field theory of 0−+0^{-+} glueball

    Full text link
    A chiral field theory of 0−+0^{-+} glueball is presented. By adding a 0−+0^{-+} glueball field to a successful Lagrangian of chiral field theory of pseudoscalar, vector, and axial-vector mesons, the Lagrangian of this theory is constructed. The couplings between the pseodoscalar glueball field and mesons are via U(1) anomaly revealed. Qualitative study of the physical processes of the 0−+0^{-+} glueball of m=1.405GeVm=1.405\textrm{GeV} is presented. The theoretical predictions can be used to identify the 0−+0^{-+} glueball.Comment: 29 page

    Chance Constrained Mixed Integer Program: Bilinear and Linear Formulations, and Benders Decomposition

    Full text link
    In this paper, we study chance constrained mixed integer program with consideration of recourse decisions and their incurred cost, developed on a finite discrete scenario set. Through studying a non-traditional bilinear mixed integer formulation, we derive its linear counterparts and show that they could be stronger than existing linear formulations. We also develop a variant of Jensen's inequality that extends the one for stochastic program. To solve this challenging problem, we present a variant of Benders decomposition method in bilinear form, which actually provides an easy-to-use algorithm framework for further improvements, along with a few enhancement strategies based on structural properties or Jensen's inequality. Computational study shows that the presented Benders decomposition method, jointly with appropriate enhancement techniques, outperforms a commercial solver by an order of magnitude on solving chance constrained program or detecting its infeasibility

    Exact bosonization in two spatial dimensions and a new class of lattice gauge theories

    Full text link
    We describe a 2d analog of the Jordan-Wigner transformation which maps an arbitrary fermionic system on a 2d lattice to a lattice gauge theory while preserving the locality of the Hamiltonian. When the space is simply-connected, this bosonization map is an equivalence. We describe several examples of 2d bosonization, including free fermions on square and honeycomb lattices and the Hubbard model. We describe Euclidean actions for the corresponding lattice gauge theories and find that they contains Chern-Simons-like terms. Finally, we write down a fermionic dual of the gauged Ising model (the Fradkin-Shenker model).Comment: 30 pages, 8 figure

    A new axiomatization of the core on fuzzy NTU games

    Get PDF
    In this note we show that on the domain of fuzzy NTU games whose core is non-empty, the core is the only solution satisfying non-emptiness, individual rationality and the reduced game property.Fuzzy games

    Supervised and Unsupervised Transfer Learning for Question Answering

    Full text link
    Although transfer learning has been shown to be successful for tasks like object and speech recognition, its applicability to question answering (QA) has yet to be well-studied. In this paper, we conduct extensive experiments to investigate the transferability of knowledge learned from a source QA dataset to a target dataset using two QA models. The performance of both models on a TOEFL listening comprehension test (Tseng et al., 2016) and MCTest (Richardson et al., 2013) is significantly improved via a simple transfer learning technique from MovieQA (Tapaswi et al., 2016). In particular, one of the models achieves the state-of-the-art on all target datasets; for the TOEFL listening comprehension test, it outperforms the previous best model by 7%. Finally, we show that transfer learning is helpful even in unsupervised scenarios when correct answers for target QA dataset examples are not available.Comment: To appear in NAACL HLT 2018 (long paper
    • …
    corecore